Title of article :
Precise numerical solutions of potential problems using the Crank–Nicolson method
Author/Authors :
Kang، نويسنده , , Daekyoung and Won، نويسنده , , E.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
7
From page :
2970
To page :
2976
Abstract :
We present a numerically precise treatment of the Crank–Nicolson method with an imaginary time evolution operator in order to solve the Schrödinger equation. The time evolution technique is applied to the inverse-iteration method that provides a systematic way to calculate not only eigenvalues of the ground-state but also of the excited-states. This method systematically produces eigenvalues with the accuracy of eleven digits when the Cornell potential is used. An absolute error estimation technique is implemented based on a power counting rule. This method is examined on exactly solvable problems and produces the numerical accuracy down to 10 - 11 .
Keywords :
Precise numerical calculation , Crank–Nicolson method , Imaginary time , Finite differences , Schr?dinger equation
Journal title :
Journal of Computational Physics
Serial Year :
2008
Journal title :
Journal of Computational Physics
Record number :
1480521
Link To Document :
بازگشت