Title of article :
A piecewise linear finite element discretization of the diffusion equation for arbitrary polyhedral grids
Author/Authors :
Bailey، نويسنده , , Teresa S. and Adams، نويسنده , , Marvin L. and Yang، نويسنده , , Brian and Zika، نويسنده , , Michael R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
20
From page :
3738
To page :
3757
Abstract :
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer’s vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer’s. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer’s method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
Keywords :
diffusion , Arbitrary polyhedral grids , piecewise linear , Finite element , finite-volume , Unstructured grids , Adaptive Mesh Refinement
Journal title :
Journal of Computational Physics
Serial Year :
2008
Journal title :
Journal of Computational Physics
Record number :
1480580
Link To Document :
بازگشت