Title of article :
Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere
Author/Authors :
Mahalov، نويسنده , , Alex and Moustaoui، نويسنده , , Mohamed، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
Vertical nesting with refined gridding in coupled mesoscale weather research and forecasting (WRF)/microscale models are presented with a particular emphasis on improved vertical resolution in the upper troposphere and lower stratosphere (UTLS). The finest mesoscale nest is coupled with a sequence of microscale nests with finer resolution in both the horizontal and the vertical. The fully three-dimensional, compressible nonhydrostatic Navier–Stokes equations are solved using a time-split method with a refined grid in the vertical, and improved resolution in the UTLS region. For nesting, both lateral and vertical boundary conditions are treated via implicit relaxation in buffer zones where all fields are relaxed to those obtained from the finest mesoscale nest. Computational results are presented demonstrating the ability of microscale nests to resolve multiscale physics of strongly nonlinear interactions and laminated structures observed in the Terrain-induced rotor experiment (T-REX) campaign of field measurements. Very high resolution real case nested simulations are conducted. The microscale nests fully resolve localized shear layers and sharp gradients of vertical velocity and potential temperature near the tropopause and in the lower stratosphere.
Keywords :
Vertical nesting , Nonhydrostatic atmospheric model , Multiscale flows in the upper troposphere and lower stratosphere
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics