Title of article :
Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation
Author/Authors :
de Falco، نويسنده , , Carlo and Jerome، نويسنده , , Joseph W. and Sacco، نويسنده , , Riccardo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
20
From page :
1770
To page :
1789
Abstract :
This article deals with the analysis of the functional iteration, denoted Generalized Gummel Map (GGM), proposed in [C. de Falco, A.L. Lacaita, E. Gatti, R. Sacco, Quantum-Corrected Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comp. Phys. 204 (2) (2005) 533–561] for the decoupled solution of the Quantum Drift-Diffusion (QDD) model. The solution of the problem is characterized as being a fixed point of the GGM, which permits the establishment of a close link between the theoretical existence analysis and the implementation of a numerical tool, which was lacking in previous non-constructive proofs [N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model, Z. Angew. Math. Phys. 49 (1998) 251–275, R. Pinnau, A. Unterreiter, The stationary current–voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal. 37 (1) (1999) 211–245]. The finite element approximation of the GGM is illustrated, and the main properties of the numerical fixed point map (discrete maximum principle and order of convergence) are discussed. Numerical results on realistic nanoscale devices are included to support the theoretical conclusions.
Keywords :
Schr?dinger–Poisson , Functional iterations , Nanoscale semiconductor devices , Semi-linear elliptic systems , Density-gradient , Finite element method , Quantum and drift-diffusion models
Journal title :
Journal of Computational Physics
Serial Year :
2009
Journal title :
Journal of Computational Physics
Record number :
1481266
Link To Document :
بازگشت