• Title of article

    A finite volume method for approximating 3D diffusion operators on general meshes

  • Author/Authors

    F. Hermeline، نويسنده , , F.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    24
  • From page
    5763
  • To page
    5786
  • Abstract
    A finite volume method is presented for discretizing 3D diffusion operators with variable full tensor coefficients. This method handles anisotropic, non-symmetric or discontinuous variable tensor coefficients while distorted, non-matching or non-convex n-faced polyhedron meshes can be used. For meshes of polyhedra whose faces have not more than four edges, the associated matrix is positive definite (and symmetric if the diffusion tensor is symmetric). A second-order (resp. first-order) accuracy is numerically observed for the solution (resp. gradient of the solution).
  • Keywords
    elliptic equations , Discrete duality finite volume method , Distorted meshes , Anisotropic Diffusion
  • Journal title
    Journal of Computational Physics
  • Serial Year
    2009
  • Journal title
    Journal of Computational Physics
  • Record number

    1481663