Title of article :
Quantum hydrodynamics with trajectories: The nonlinear conservation form mixed/discontinuous Galerkin method with applications in chemistry
Author/Authors :
Michoski، نويسنده , , C. and Evans، نويسنده , , J.A. and Schmitz، نويسنده , , P.G. and Vasseur، نويسنده , , A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We present a solution to the conservation form (Eulerian form) of the quantum hydrodynamic equations which arise in chemical dynamics by implementing a mixed/discontinuous Galerkin (MDG) finite element numerical scheme. We show that this methodology is stable, showing good accuracy and a remarkable scale invariance in its solution space. In addition the MDG method is robust, adapting well to various initial-boundary value problems of particular significance in a range of physical and chemical applications. We further show explicitly how to recover the Lagrangian frame (or pathline) solutions.
Keywords :
Bohmian trajectories , dispersion , discontinuous Galerkin , Quantum hydrodynamics , Time-dependent Schrِdinger equation , chemical dynamics , Chemistry , Tunneling reactions , Conservation laws , mixed method
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics