• Title of article

    A numerical algorithm for the solution of a phase-field model of polycrystalline materials

  • Author/Authors

    Dorr، نويسنده , , M.R. and Fattebert، نويسنده , , J.-L. and Wickett، نويسنده , , M.E. and Belak، نويسنده , , J.F. and Turchi، نويسنده , , P.E.A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    16
  • From page
    626
  • To page
    641
  • Abstract
    We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a quaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton–Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton–Krylov algorithm is the selection of a preconditioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples.
  • Keywords
    phase-field model , polycrystalline microstructure , Newton–Krylov methods , method of lines
  • Journal title
    Journal of Computational Physics
  • Serial Year
    2010
  • Journal title
    Journal of Computational Physics
  • Record number

    1482034