Title of article :
Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
Author/Authors :
Johnsen، نويسنده , , Eric and Larsson، نويسنده , , Johan and Bhagatwala، نويسنده , , Ankit V. and Cabot، نويسنده , , William H. and Moin، نويسنده , , Parviz and Olson، نويسنده , , Britton J. and Rawat، نويسنده , , Pradeep S. and Shankar، نويسنده , , Santhosh K. and Sjِgreen، نويسنده , , Bjِrn and Yee، نويسنده , , H.C. and Zhong، نويسنده , , Xiaolin and Lele، نويسنده , , Sanjiva K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
25
From page :
1213
To page :
1237
Abstract :
Flows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor–Green vortex, Shu–Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
Keywords :
direct numerical simulation , Hybrid Methods , Shock-capturing , compressible turbulence , High-resolution methods , large-eddy simulation , Shock fitting , Adaptive characteristic-based filters , Artificial diffusivity methods
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482085
Link To Document :
بازگشت