Title of article :
SVD–GFD scheme to simulate complex moving body problems in 3D space
Author/Authors :
Wang، نويسنده , , X.Y. and Yu، نويسنده , , P. and Yeo، نويسنده , , K.S. and Khoo، نويسنده , , B.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
25
From page :
2314
To page :
2338
Abstract :
The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian–Eulerian (ALE) form of the Navier–Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.
Keywords :
Incompressible Navier–Stokes , Moving body , Generalized finite difference , Flapping wings , Hybrid meshfree-and-Cartesian grid
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482180
Link To Document :
بازگشت