Title of article :
Symplectic wavelet collocation method for Hamiltonian wave equations
Author/Authors :
Zhu، نويسنده , , Huajun and Tang، نويسنده , , Lingyan and Song، نويسنده , , Songhe and Tang، نويسنده , , Yifa and Wang، نويسنده , , Desheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
23
From page :
2550
To page :
2572
Abstract :
This paper introduces a novel symplectic wavelet collocation method for solving nonlinear Hamiltonian wave equations. Based on the autocorrelation functions of Daubechies compactly supported scaling functions, collocation method is conducted for the spatial discretization, which leads to a finite-dimensional Hamiltonian system. Then, appropriate symplectic scheme is employed for the integration of the Hamiltonian system. Under the hypothesis of periodicity, the properties of the resulted space differentiation matrix are analyzed in detail. Conservation of energy and momentum is also investigated. Various numerical experiments show the effectiveness of the proposed method.
Keywords :
Wavelet collocation , Symplectic scheme , Hamiltonian system
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482206
Link To Document :
بازگشت