Title of article
An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements
Author/Authors
Chen، نويسنده , , Junqing and Xu، نويسنده , , Yifeng and Zou، نويسنده , , Jun، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
10
From page
2649
To page
2658
Abstract
We propose and analyze an adaptive inverse iterative method for solving the Maxwell eigenvalue problem with discontinuous physical parameters in three dimensions. The adaptive method updates the eigenvalue and eigenfunction based on an a posteriori error estimate of the edge element discretization. At each iteration, the involved saddle-point Maxwell system is transformed into an equivalent system consisting of a singular Maxwell equation and two Poisson equations, for both of which preconditioned iterative solvers are available with optimal convergence rate in terms of the total degrees of freedom. Numerical results are presented, which confirms the quasi-optimal convergence of the adaptive edge element method in terms of the numerical accuracy and the total degrees of freedom.
Keywords
Maxwell eigenvalue problem , Adaptive inverse iteration , A posterior error estimates , Edge elements
Journal title
Journal of Computational Physics
Serial Year
2010
Journal title
Journal of Computational Physics
Record number
1482212
Link To Document