Title of article :
An algebraic variational multiscale–multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number
Author/Authors :
Gravemeier، نويسنده , , Volker and Wall، نويسنده , , Wolfgang A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
An algebraic variational multiscale–multigrid method is proposed for large-eddy simulation of turbulent variable-density flow at low Mach number. Scale-separating operators generated by level-transfer operators from plain aggregation algebraic multigrid methods enable the application of modeling terms to selected scale groups (here, the smaller of the resolved scales) in a purely algebraic way. Thus, for scale separation, no additional discretization besides the basic one is required, in contrast to earlier approaches based on geometric multigrid methods. The proposed method is thoroughly validated via three numerical test cases of increasing complexity: a Rayleigh–Taylor instability, turbulent channel flow with a heated and a cooled wall, and turbulent flow past a backward-facing step with heating. Results obtained with the algebraic variational multiscale–multigrid method are compared to results obtained with residual-based variational multiscale methods as well as reference results from direct numerical simulation, experiments and LES published elsewhere. Particularly, mean and various second-order velocity and temperature results obtained for turbulent channel flow with a heated and a cooled wall indicate the higher prediction quality achievable when adding a small-scale subgrid-viscosity term within the algebraic multigrid framework instead of residual-based terms accounting for the subgrid-scale part of the non-linear convective term.
Keywords :
Turbulent variable-density flow , large-eddy simulation , Finite element method , Variational multiscale method , algebraic multigrid
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics