Title of article :
A Rayleigh–Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices
Author/Authors :
Anderson، نويسنده , , Christopher R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
11
From page :
7477
To page :
7487
Abstract :
A procedure is presented for finding a number of the smallest eigenvalues and their associated eigenvectors of large sparse Hermitian matrices. The procedure, a modification of an inverse subspace iteration procedure, uses adaptively determined Chebyshev polynomials to approximate the required application of the inverse operator on the subspace. The method is robust, converges with acceptable rapidity, and can easily handle operators with eigenvalues of multiplicity greater than one. Numerical results are shown that demonstrate the utility of the procedure.
Keywords :
Eigenvectors , Inverse iteration , Chebyshev polynomials , Hermitian matrices , eigenvalues
Journal title :
Journal of Computational Physics
Serial Year :
2010
Journal title :
Journal of Computational Physics
Record number :
1482763
Link To Document :
بازگشت