Title of article :
Symplectic and multisymplectic numerical methods for Maxwell’s equations
Author/Authors :
Sun، نويسنده , , Y. and Tse، نويسنده , , P.S.P.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, we compare the behaviour of one symplectic and three multisymplectic methods for Maxwell’s equations in a simple medium. This is a system of PDEs with symplectic and multisymplectic structures. We give a theoretical discussion of how some numerical methods preserve the discrete versions of the local and global conservation laws and verify this behaviour in numerical experiments. We also show that these numerical methods preserve the divergence. Furthermore, we extend the discussion on dispersion for (multi)symplectic methods applied to PDEs with one spatial dimension, to include anisotropy when applying (multi)symplectic methods to Maxwell’s equations in two spatial dimensions. Lastly, we demonstrate how varying the Courant–Friedrichs–Lewy (CFL) number can cause the (multi)symplectic methods in our comparison to behave differently, which can be explained by the study of backward error analysis for PDEs.
Keywords :
Multisymplectic methods , Symplectic methods , Energy-preserving methods , Backward error analysis , Maxwell’s equations , Dispersion relations
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics