Title of article :
Entropy viscosity method for nonlinear conservation laws
Author/Authors :
Guermond، نويسنده , , Jean-Luc and Pasquetti، نويسنده , , Richard and Popov، نويسنده , , Bojan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
20
From page :
4248
To page :
4267
Abstract :
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method.
Keywords :
Euler equations , Finite elements , Fourier method , Godunov schemes , Central schemes , Conservation laws , spectral elements , Entropy viscosity
Journal title :
Journal of Computational Physics
Serial Year :
2011
Journal title :
Journal of Computational Physics
Record number :
1483395
Link To Document :
بازگشت