Title of article :
A high order moving boundary treatment for compressible inviscid flows
Author/Authors :
Tan، نويسنده , , Sirui and Shu، نويسنده , , Chi-Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
14
From page :
6023
To page :
6036
Abstract :
We develop a high order numerical boundary condition for compressible inviscid flows involving complex moving geometries. It is based on finite difference methods on fixed Cartesian meshes which pose a challenge that the moving boundaries intersect the grid lines in an arbitrary fashion. Our method is an extension of the so-called inverse Lax–Wendroff procedure proposed in [17] for conservation laws in static geometries. This procedure helps us obtain normal spatial derivatives at inflow boundaries from Lagrangian time derivatives and tangential derivatives by repeated use of the Euler equations. Together with high order extrapolation at outflow boundaries, we can impose accurate values of ghost points near the boundaries by a Taylor expansion. To maintain high order accuracy in time, we need some special time matching technique at the two intermediate Runge–Kutta stages. Numerical examples in one and two dimensions show that our boundary treatment is high order accurate for problems with smooth solutions. Our method also performs well for problems involving interactions between shocks and moving rigid bodies.
Keywords :
Compressible inviscid flows , No-penetration conditions , Numerical boundary conditions , Complex moving boundaries , Inverse Lax–Wendroff procedure
Journal title :
Journal of Computational Physics
Serial Year :
2011
Journal title :
Journal of Computational Physics
Record number :
1483552
Link To Document :
بازگشت