Title of article :
Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations
Author/Authors :
Nguyen، نويسنده , , N.C. and Peraire، نويسنده , , J. and Cockburn، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
25
From page :
7151
To page :
7175
Abstract :
We present two hybridizable discontinuous Galerkin (HDG) methods for the numerical solution of the time-harmonic Maxwell’s equations. The first HDG method explicitly enforces the divergence-free condition and thus necessitates the introduction of a Lagrange multiplier. It produces a linear system for the degrees of freedom of the approximate traces of both the tangential component of the vector field and the Lagrange multiplier. The second HDG method does not explicitly enforce the divergence-free condition and thus results in a linear system for the degrees of freedom of the approximate trace of the tangential component of the vector field only. For both HDG methods, the approximate vector field converges with the optimal order of k + 1 in the L2-norm, when polynomials of degree k are used to represent all the approximate variables. We propose elementwise postprocessing to obtain a new Hcurl-conforming approximate vector field which converges with order k + 1 in the Hcurl-norm. We present extensive numerical examples to demonstrate and compare the performance of the HDG methods.
Keywords :
Finite element method , discontinuous Galerkin methods , Hybrid/mixed methods , Maxwell’s equations , computational electromagnetics , postprocessing
Journal title :
Journal of Computational Physics
Serial Year :
2011
Journal title :
Journal of Computational Physics
Record number :
1483686
Link To Document :
بازگشت