Title of article :
Solving eigenvalue problems on curved surfaces using the Closest Point Method
Author/Authors :
Macdonald، نويسنده , , Colin B. and Brandman، نويسنده , , Jeremy and Ruuth، نويسنده , , Steven J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
13
From page :
7944
To page :
7956
Abstract :
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace–Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach.
Keywords :
eigenvalues , Eigenfunctions , Laplace–Beltrami operator , Closest Point Method , Surface computation , Implicit surfaces
Journal title :
Journal of Computational Physics
Serial Year :
2011
Journal title :
Journal of Computational Physics
Record number :
1483841
Link To Document :
بازگشت