Title of article :
Data assimilation using a GPU accelerated path integral Monte Carlo approach
Author/Authors :
Quinn، نويسنده , , John C. and Abarbanel، نويسنده , , Henry D.I.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
8168
To page :
8178
Abstract :
The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a graphics processing unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin–Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.
Keywords :
State and parameter estimation , Data assimilation , GPU computing , path integral Monte Carlo , Hodgkin–Huxley
Journal title :
Journal of Computational Physics
Serial Year :
2011
Journal title :
Journal of Computational Physics
Record number :
1483881
Link To Document :
بازگشت