Title of article :
A Fourier–Legendre spectral element method in polar coordinates
Author/Authors :
Qiu، نويسنده , , Zhouhua and Zeng، نويسنده , , Qing-Zhong and Mei، نويسنده , , Huan and Li، نويسنده , , Liang-Feng Yao، نويسنده , , Liping and Zhang، نويسنده , , Liangqi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
In this paper, a new Fourier–Legendre spectral element method based on the Galerkin formulation is proposed to solve the Poisson-type equations in polar coordinates. The 1/r singularity at r = 0 is avoided by using Gauss–Radau type quadrature points. In order to break the time-step restriction in the time-dependent problems, the clustering of collocation points near the pole is prevented through the technique of domain decomposition in the radial direction. A number of Poisson-type equations subject to the Dirichlet or Neumann boundary condition are computed and compared with the results in literature, which reveals a desirable result.
Keywords :
spectral element method , Legendre polynomials , Legendre-Gauss–Lobatto , Poisson-type equation , polar coordinates , Legendre–Gauss–Radau
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics