Title of article :
A random map implementation of implicit filters
Author/Authors :
Morzfeld، نويسنده , , Matthias and Tu، نويسنده , , Xuemin and Atkins، نويسنده , , Ethan and Chorin، نويسنده , , Alexandre J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
18
From page :
2049
To page :
2066
Abstract :
Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto–Sivashinsky equation with observations that are sparse in both space and time.
Keywords :
Data assimilation , particle filters , Implicit sampling , Sequential Monte Carlo
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484170
Link To Document :
بازگشت