Title of article :
Data-free inference of the joint distribution of uncertain model parameters
Author/Authors :
Berry، نويسنده , , Robert D. and Najm، نويسنده , , Habib N. and Debusschere، نويسنده , , Bert J. and Marzouk، نويسنده , , Youssef M. and Adalsteinsson، نويسنده , , Helgi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
19
From page :
2180
To page :
2198
Abstract :
A critical problem in accurately estimating uncertainty in model predictions is the lack of details in the literature on the correlation (or full joint distribution) of uncertain model parameters. In this paper we describe a framework and a class of algorithms for analyzing such “missing data” problems in the setting of Bayesian statistics. The analysis focuses on the family of posterior distributions consistent with given statistics (e.g. nominal values, confidence intervals). The combining of consistent distributions is addressed via techniques from the opinion pooling literature. The developed approach allows subsequent propagation of uncertainty in model inputs consistent with reported statistics, in the absence of data.
Keywords :
Bayesian statistics , uncertainty quantification , Missing information
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484184
Link To Document :
بازگشت