Title of article :
CAD and mesh repair with Radial Basis Functions
Author/Authors :
Marchandise، نويسنده , , E. and Piret، نويسنده , , C. and Remacle، نويسنده , , J.-F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
In this paper we present a process that includes both model/mesh repair and mesh generation. The repair algorithm is based on an initial mesh that may be either an initial mesh of a dirty CAD model or STL triangulation with many errors such as gaps, overlaps and T-junctions. This initial mesh is then remeshed by computing a discrete parametrization with Radial Basis Functions (RBF’s).
wed in [1] that a discrete parametrization can be computed by solving Partial Differential Equations (PDE’s) on an initial correct mesh using finite elements. Paradoxically, the meshless character of the RBF’s makes it an attractive numerical method for solving the PDE’s for the parametrization in the case where the initial mesh contains errors or holes. In this work, we implement the Orthogonal Gradients method to be described in [2], as a RBF solution method for solving PDE’s on arbitrary surfaces.
ent examples show that the presented method is able to deal with errors such as gaps, overlaps, T-junctions and that the resulting meshes are of high quality. Moreover, the presented algorithm can be used as a hole-filling algorithm to repair meshes with undesirable holes. The overall procedure is implemented in the open-source mesh generator Gmsh [3].
Keywords :
radial basis functions , Geometry processing , RBF , Surface remeshing , Surface parametrization , STL file format , Harmonic map , Orthogonal Gradients method , Hole filling algorithm , Surface mapping
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics