Title of article :
A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements
Author/Authors :
Tsuji، نويسنده , , Paul and Engquist، نويسنده , , Bjorn and Ying، نويسنده , , Lexing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
14
From page :
3770
To page :
3783
Abstract :
This paper is concerned with preconditioning the stiffness matrix resulting from finite element discretizations of Maxwell’s equations in the high frequency regime. The moving PML sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite difference grid, is generalized to an unstructured mesh with finite elements. The method dramatically reduces the number of GMRES iterations necessary for convergence, resulting in an almost linear complexity solver. Numerical examples including electromagnetic cloaking simulations are presented to demonstrate the efficiency of the proposed method.
Keywords :
Frequency domain , Fast solvers , Maxwell’s equations , Preconditioners , finite element methods , perfectly matched layers , Block LDLt factorization , High-frequency waves
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484332
Link To Document :
بازگشت