Title of article :
A multi-domain Fourier pseudospectral time-domain method for the linearized Euler equations
Author/Authors :
Hornikx، نويسنده , , Maarten and De Roeck، نويسنده , , Wim and Desmet، نويسنده , , Wim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
16
From page :
4759
To page :
4774
Abstract :
The Fourier pseudospectral time-domain (F-PSTD) method is computationally one of the most cost-efficient methods for solving the linearized Euler equations for wave propagation through a medium with smoothly varying spatial inhomogeneities in the presence of rigid boundaries. As the method utilizes an equidistant discretization, local fine scale effects of geometry or medium inhomogeneities require a refinement of the whole grid which significantly reduces the computational efficiency. For this reason, a multi-domain F-PSTD methodology is presented with a coarse grid covering the complete domain and fine grids acting as a subgrid resolution of the coarse grid near local fine scale effects. Data transfer between coarse and fine grids takes place utilizing spectral interpolation with super-Gaussian window functions to impose spatial periodicity. Local time stepping is employed without intermediate interpolation. The errors introduced by the window functions and the multi-domain implementation are quantified and compared to errors related to the initial conditions and from the time iteration scheme. It is concluded that the multi-domain methodology does not introduce significant errors compared to the single-domain method. Examples of scattering from small scale density scatters, sound reflecting from a slitted rigid object and sound propagation through a jet are accurately modelled by the proposed methodology. For problems that can be solved by F-PSTD, the presented methodology can lead to a significant gain in computational efficiency.
Keywords :
Fourier pseudospectral method , Linearized Euler equations , Multi-domain method , Multi-rate method , Grid refinement
Journal title :
Journal of Computational Physics
Serial Year :
2012
Journal title :
Journal of Computational Physics
Record number :
1484412
Link To Document :
بازگشت