Title of article :
A second-order virtual node algorithm for nearly incompressible linear elasticity in irregular domains
Author/Authors :
Zhu، نويسنده , , Yongning and Wang، نويسنده , , Yuting and Hellrung، نويسنده , , Jeffrey and Cantarero، نويسنده , , Alejandro and Sifakis، نويسنده , , Eftychios and Teran، نويسنده , , Joseph M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We present a cut cell method in R 2 for enforcing Dirichlet and Neumann boundary conditions with nearly incompressible linear elastic materials in irregular domains. Virtual nodes on cut uniform grid cells are used to provide geometric flexibility in the domain boundary shape without sacrificing accuracy. We use a mixed formulation utilizing a MAC-type staggered grid with piecewise bilinear displacements centered at cell faces and piecewise constant pressures at cell centers. These discretization choices provide the necessary stability in the incompressible limit and the necessary accuracy in cut cells. Numerical experiments suggest second order accuracy in L ∞ . We target high-resolution problems and present a class of geometric multigrid methods for solving the discrete equations for displacements and pressures that achieves nearly optimal convergence rates independent of grid resolution.
Keywords :
Linear Elasticity , Virtual node methods , variational methods , Mixed finite element method
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics