Title of article :
An optimally blended finite-spectral element scheme with minimal dispersion for Maxwell equations
Author/Authors :
Wajid، نويسنده , , Hafiz Abdul and Ayub، نويسنده , , Sobia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
We study the dispersive properties of the time harmonic Maxwell equations for optimally blended finite-spectral element scheme using tensor product elements defined on rectangular grid in d-dimensions. We prove and give analytical expressions for the discrete dispersion relations for this scheme. We find that for a rectangular grid (a) the analytical expressions for the discrete dispersion error in higher dimensions can be obtained using one dimensional discrete dispersion error expressions; (b) the optimum value of the blending parameter is p / ( p + 1 ) for all p ∈ N and for any number of spatial dimensions; (c) analytical expressions for the discrete dispersion relations for finite element and spectral element schemes can be obtained when the value of blending parameter is chosen to be 0 and 1 respectively; (d) the optimally blended scheme guarantees two additional orders of accuracy compared with standard finite element and spectral element schemes; and (e) the absolute accuracy of the optimally blended scheme is O ( p - 2 ) and O ( p - 1 ) times better than that of the pure finite element and spectral element schemes respectively.
Keywords :
Edge finite element , Discrete dispersion relation , Numerical dispersion
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics