Title of article :
High-order optimal edge elements for pyramids, prisms and hexahedra
Author/Authors :
Bergot، نويسنده , , Morgane and Duruflé، نويسنده , , Marc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
25
From page :
189
To page :
213
Abstract :
Edge elements are a popular method to solve Maxwell’s equations especially in time-harmonic domain. However, when non-affine elements are considered, elements of the Nédélec’s first family [19] are not providing an optimal rate of the convergence of the numerical solution toward the solution of the exact problem in H(curl)-norm. We propose new finite element spaces for pyramids, prisms, and hexahedra in order to recover the optimal convergence. In the particular case of pyramids, a comparison with other existing elements found in the literature is performed. Numerical results show the good behavior of these new finite elements.
Keywords :
High-order finite element , Edge elements , Pyramids , Maxwell’s equations
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1484891
Link To Document :
بازگشت