Title of article :
Self-organized hydrodynamics with congestion and path formation in crowds
Author/Authors :
Degond، نويسنده , , Pierre and Hua، نويسنده , , Jiale، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A continuum model for self-organized dynamics is numerically investigated. The model describes systems of particles subject to alignment interaction and short-range repulsion. It consists of a non-conservative hyperbolic system for the density and velocity orientation. Short-range repulsion is included through a singular pressure which becomes infinite at the jamming density. The singular limit of infinite pressure stiffness leads to phase transitions from compressible to incompressible dynamics. The paper proposes an Asymptotic-Preserving scheme which takes care of the singular pressure while preventing the breakdown of the Courant–Friedrichs–Lewy (CFL) stability condition near congestion. It relies on a relaxation approximation of the system and an elliptic formulation of the pressure equation. Numerical simulations of impinging clusters show the efficiency of the scheme to treat congestions. A two-fluid variant of the model provides a model of path formation in crowds.
Keywords :
Hydrodynamic limit , Volume exclusion , Jamming , Congestion , finite volumes , herds , Crowds , Path formation , Self-propelled particles , self-organization , Asymptotic-Preserving scheme , Oientation dynamics
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics