Title of article :
Karhunen–Loève expansion revisited for vector-valued random fields: Scaling, errors and optimal basis.
Author/Authors :
Perrin، نويسنده , , G. and Soize، نويسنده , , C. and Duhamel، نويسنده , , D. and Funfschilling، نويسنده , , C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
16
From page :
607
To page :
622
Abstract :
Due to scaling effects, when dealing with vector-valued random fields, the classical Karhunen–Loève expansion, which is optimal with respect to the total mean square error, tends to favorize the components of the random field that have the highest signal energy. When these random fields are to be used in mechanical systems, this phenomenon can introduce undesired biases for the results. This paper presents therefore an adaptation of the Karhunen–Loève expansion that allows us to control these biases and to minimize them. This original decomposition is first analyzed from a theoretical point of view, and is then illustrated on a numerical example.
Keywords :
Vector-valued random field , optimal basis , Karhunen–Loève expansion
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1485411
Link To Document :
بازگشت