Title of article :
Enhanced performance and stability in polymer photovoltaic cells using lithium benzoate as cathode interfacial layer
Author/Authors :
Wang، نويسنده , , Yaling and Yang، نويسنده , , Liying and Yao، نويسنده , , Cong and Qin، نويسنده , , Wenjing and Yin، نويسنده , , Shougen and Zhang، نويسنده , , Fengling، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
1243
To page :
1247
Abstract :
We report the enhanced performance and stability of polymer solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend using lithium benzoate (C6H5COOLi) as cathode buffer layer between the active layer and the Al cathode. The effects of the C6H5COOLi thickness on the performance of polymer solar cell are also investigated. Under 100 mW/cm2 white light illumination, the device with 1 nm thick C6H5COOLi as cathode buffer layer exhibits power conversion efficiency (PCE) as high as 3.41±0.07% and the device stability is greatly extended. Compared to the solar cell with LiF/Al cathode, the PCE is increased ca. 9.4%. Introduction of C6H5COOLi buffer layer effectively increases the shunt resistance and improves the photo-generated charge collection. The improved performance may attribute to the dissociation of semi-conducting C6H5COOLi upon deposition to liberate Li with a low work function, which reduces the interface resistance of the active layer and the cathode and enhances the interior electric field that may result in efficient charge transportion. In addition, the C6H5COOLi layer may serve as an effective oxygen and moisture diffusion barrier for the organic solar cells. Therefore, C6H5COOLi is a promising candidate as an interlayer to improve the efficiency of electron collection and to reduce the ambience influence on the stability of polymer solar cells.
Keywords :
Lithium benzoate , stability , cathode , Buffer layer , Polymer bulk heterojunction
Journal title :
Solar Energy Materials and Solar Cells
Serial Year :
2011
Journal title :
Solar Energy Materials and Solar Cells
Record number :
1485423
Link To Document :
بازگشت