Title of article :
PIROCK: A swiss-knife partitioned implicit–explicit orthogonal Runge–Kutta Chebyshev integrator for stiff diffusion–advection–reaction problems with or without noise
Author/Authors :
Abdulle، نويسنده , , Assyr and Vilmart، نويسنده , , Gilles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
A partitioned implicit–explicit orthogonal Runge–Kutta method (PIROCK) is proposed for the time integration of diffusion–advection–reaction problems with possibly severely stiff reaction terms and stiff stochastic terms. The diffusion terms are solved by the explicit second order orthogonal Chebyshev method (ROCK2), while the stiff reaction terms (solved implicitly) and the advection and noise terms (solved explicitly) are integrated in the algorithm as finishing procedures. It is shown that the various coupling (between diffusion, reaction, advection and noise) can be stabilized in the PIROCK method. The method, implemented in a single black-box code that is fully adaptive, provides error estimators for the various terms present in the problem, and requires from the user solely the right-hand side of the differential equation. Numerical experiments and comparisons with existing Chebyshev methods, IMEX methods and partitioned methods show the efficiency and flexibility of our new algorithm.
Keywords :
ROCK method , Stabilized second-order integration method , Advection–diffusion–reaction problems , Stiff problems , Stochastic problems , Partitioned Runge–Kutta methods
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics