Title of article :
On optimizing Jacobi–Davidson method for calculating eigenvalues in low dimensional structures using eight band k · p model
Author/Authors :
Andrzejewski، نويسنده , , Janusz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The paper presents two ways of improving the Jacobi–Davidson method for calculating the eigenvalues and eigenvectors described by eight-band k · p model for quantum dots and other low dimensional structures. First, the method is extended by the application of time reversal symmetry operator. This extension allows efficient calculations of the twofold degeneracy present in the multiband k · p model and other interior eigenvalues. Second, the preconditioner for the indefinite matrix which comes from the discretization of the eight band k · p Hamiltonian is presented. The construction of this preconditioner is based on physical considerations about energy band structure in the k · p model. On the basis of two real examples, it is shown that the preconditioner can significantly shorten the time needed to calculate the interior eigenvalues, despite the fact that the memory usage of the preconditioner and Hamiltionian is comparable. Finally, some technical details for implementing the eight band k · p Hamiltonian and the eigensolver are provided.
Keywords :
Jacobi–Davidson method , Preconditioning , Eight band k , Low dimensional structures , · , Electronic structure , p model
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics