Title of article :
Minimum Sobolev norm interpolation with trigonometric polynomials on the torus
Author/Authors :
Chandrasekaran، نويسنده , , Rahul S. and Jayaraman، نويسنده , , K.R. and Mhaskar، نويسنده , , H.N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
17
From page :
96
To page :
112
Abstract :
Let q ⩾ 1 be an integer, y 1 , … , y M ∈ [ - π , π ] q , and η be the minimal separation among these points. Given the samples { f ( y j ) } j = 1 M of a smooth target function f of q variables, 2 π -periodic in each variable, we consider the problem of constructing a q-variate trigonometric polynomial of spherical degree O ( η - 1 ) which interpolates the given data, remains bounded in the Sobolev norm (independent of η or M) on [ - π , π ] q , and converges to the function f on the set where the data becomes dense. We prove that the solution of an appropriate optimization problem leads to such an interpolant. Numerical examples are given to demonstrate that this procedure overcomes the Runge phenomenon when interpolation at equidistant nodes on [ - 1 , 1 ] is constructed, and also provides a respectable approximation for bivariate grid data, which does not become dense on the whole domain.
Keywords :
Multivariate interpolation , Minimum Sobolev norm interpolation , Uniformly bounded interpolatory operators , Localized kernels
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1485825
Link To Document :
بازگشت