Title of article :
Quasi-a priori truncation error estimation and higher order extrapolation for non-linear partial differential equations
Author/Authors :
Fraysse، نويسنده , , F. and Valero، نويسنده , , E. and Rubio، نويسنده , , G.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
16
From page :
389
To page :
404
Abstract :
In this paper, we show how to accurately estimate the local truncation error of partial differential equations in a quasi-a priori way. We approximate the spatial truncation error using the τ-estimation procedure, which aims to compare the discretisation on a sequence of grids with different spacing. While most of the works in the literature focused on an a posteriori estimation, the following work develops an estimator for non-converged solutions. First, we focus the analysis on one- and two-dimensional scalar non-linear test cases to examine the accuracy of the approach using a finite difference discretisation. Then, we extend the analysis to a two-dimensional vectorial problem: the Euler equations discretised using a finite volume vertex-based approach. Finally, we propose to analyse a direct application: τ-extrapolation based on non-converged τ-estimation. We demonstrate that a solution with an improved accuracy can be obtained from a non-a posteriori error estimation approach.
Keywords :
Finite volume solvers , Uncertainty estimator , multigrid , Quasi-a priori truncation error
Journal title :
Journal of Computational Physics
Serial Year :
2013
Journal title :
Journal of Computational Physics
Record number :
1486036
Link To Document :
بازگشت