Title of article :
Adjoint consistency analysis of residual-based variational multiscale methods
Author/Authors :
Hicken، نويسنده , , J.E. and LI، نويسنده , , J. and Sahni، نويسنده , , O. and Oberai، نويسنده , , A.A.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
We investigate the conditions under which residual-based variational multiscale methods are adjoint, or dual, consistent for model hyperbolic and elliptic partial differential equations. In particular, while many residual-based variational multiscale stabilizations are adjoint consistent for hyperbolic problems and finite-element spaces, only a few are adjoint consistent for elliptic problems.
Keywords :
Dual consistency , Functional superconvergence , Adjoint consistency , Differentiate-then-discretize , Variational multiscale method , Discretize-then-differentiate
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics