Title of article :
Preconditioned iterative methods for fractional diffusion equation
Author/Authors :
Lin، نويسنده , , Fu-Rong and Yang، نويسنده , , Shi-Wei and Jin، نويسنده , , Xiao-Qing، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
109
To page :
117
Abstract :
In this paper, we are concerned with numerical methods for the solution of initial–boundary value problems of anomalous diffusion equations of order α ∈ ( 1 , 2 ) . The classical Crank–Nicholson method is used to discretize the fractional diffusion equation and then the spatial extrapolation is used to obtain temporally and spatially second-order accurate numerical estimates. Two preconditioned iterative methods, namely, the preconditioned generalized minimal residual (preconditioned GMRES) method and the preconditioned conjugate gradient for normal residual (preconditioned CGNR) method, are proposed to solve relevant linear systems. Numerical experiments are given to illustrate the efficiency of the methods.
Keywords :
Toeplitz matrix , Fractional diffusion equation , Preconditioned GMRES method , FFT , Preconditioned CGNR method
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1486131
Link To Document :
بازگشت