Title of article :
A stochastic Galerkin method for the Euler equations with Roe variable transformation
Author/Authors :
Pettersson، نويسنده , , Per and Iaccarino، نويسنده , , Gianluca and Nordstrِm، نويسنده , , Jan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
The Euler equations subject to uncertainty in the initial and boundary conditions are investigated via the stochastic Galerkin approach. We present a new fully intrusive method based on a variable transformation of the continuous equations. Roe variables are employed to get quadratic dependence in the flux function and a well-defined Roe average matrix that can be determined without matrix inversion.
vious formulations based on generalized polynomial chaos expansion of the physical variables, the need to introduce stochastic expansions of inverse quantities, or square roots of stochastic quantities of interest, adds to the number of possible different ways to approximate the original stochastic problem. We present a method where the square roots occur in the choice of variables, resulting in an unambiguous problem formulation.
e formulation saves computational cost compared to the formulation based on expansion of conservative variables. Moreover, the Roe formulation is more robust and can handle cases of supersonic flow, for which the conservative variable formulation fails to produce a bounded solution. For certain stochastic basis functions, the proposed method can be made more effective and well-conditioned. This leads to increased robustness for both choices of variables. We use a multi-wavelet basis that can be chosen to include a large number of resolution levels to handle more extreme cases (e.g. strong discontinuities) in a robust way. For smooth cases, the order of the polynomial representation can be increased for increased accuracy.
Keywords :
uncertainty quantification , Euler equations , Roe variable transformation , Multi-wavelets , Stochastic Galerkin method
Journal title :
Journal of Computational Physics
Journal title :
Journal of Computational Physics