Title of article :
A hybrid Hermite–discontinuous Galerkin method for hyperbolic systems with application to Maxwellʼs equations
Author/Authors :
Chen، نويسنده , , Xi (Ronald) and Appelِ، نويسنده , , Daniel and Hagstrom، نويسنده , , Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
20
From page :
501
To page :
520
Abstract :
A high order discretization strategy for solving hyperbolic initial–boundary value problems on hybrid structured–unstructured grids is proposed. The method leverages the capabilities of two distinct families of polynomial elements: discontinuous Galerkin discretizations which can be applied on elements of arbitrary shape, and Hermite discretizations which allow highly efficient implementations on staircased Cartesian grids. We demonstrate through numerical experiments in 1 + 1 and 2 + 1 dimensions that the hybridized method is stable and efficient.
Keywords :
spectral elements , Hyperbolic initial–boundary value problems , Hybrid grids
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1486236
Link To Document :
بازگشت