Title of article :
Bayesian estimates of parameter variability in the k–ε turbulence model
Author/Authors :
Melissa A. Edeling، نويسنده , , W.N. and Cinnella، نويسنده , , P. and Dwight، نويسنده , , R.P. and Bijl، نويسنده , , H.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
22
From page :
73
To page :
94
Abstract :
In this paper we are concerned with obtaining estimates for the error in Reynolds-averaged Navier–Stokes (RANS) simulations based on the Launder–Sharma k–ε turbulence closure model, for a limited class of flows. In particular we search for estimates grounded in uncertainties in the space of model closure coefficients, for wall-bounded flows at a variety of favorable and adverse pressure gradients. In order to estimate the spread of closure coefficients which reproduces these flows accurately, we perform 13 separate Bayesian calibrations – each at a different pressure gradient – using measured boundary-layer velocity profiles, and a statistical model containing a multiplicative model-inadequacy term in the solution space. The results are 13 joint posterior distributions over coefficients and hyper-parameters. To summarize this information we compute Highest Posterior-Density (HPD) intervals, and subsequently represent the total solution uncertainty with a probability-box (p-box). This p-box represents both parameter variability across flows, and epistemic uncertainty within each calibration. A prediction of a new boundary-layer flow is made with uncertainty bars generated from this uncertainty information, and the resulting error estimate is shown to be consistent with measurement data.
Keywords :
Bayesian calibration , Parameter variability , Model inadequacy , Global sensitivity analysis , RANS turbulence model
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1486315
Link To Document :
بازگشت