Title of article :
Numerical modeling of wave propagation in functionally graded materials using time-domain spectral Chebyshev elements
Author/Authors :
Hedayatrasa، نويسنده , , Saeid and Bui، نويسنده , , Tinh Quoc and Zhang، نويسنده , , Chuanzeng and Lim، نويسنده , , Chee Wah، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
24
From page :
381
To page :
404
Abstract :
Numerical modeling of the Lamb wave propagation in functionally graded materials (FGMs) by a two-dimensional time-domain spectral finite element method (SpFEM) is presented. The high-order Chebyshev polynomials as approximation functions are used in the present formulation, which provides the capability to take into account the through thickness variation of the material properties. The efficiency and accuracy of the present model with one and two layers of 5th order spectral elements in modeling wave propagation in FGM plates are analyzed. Different excitation frequencies in a wide range of 28–350 kHz are investigated, and the dispersion properties obtained by the present model are verified by reference results. The through thickness wave structure of two principal Lamb modes are extracted and analyzed by the symmetry and relative amplitude of the vertical and horizontal oscillations. The differences with respect to Lamb modes generated in homogeneous plates are explained. Zero-crossing and wavelet signal processing–spectrum decomposition procedures are implemented to obtain phase and group velocities and their dispersion properties. So it is attested how this approach can be practically employed for simulation, calibration and optimization of Lamb wave based nondestructive evaluation techniques for the FGMs. The capability of modeling stress wave propagation through the thickness of an FGM specimen subjected to impact load is also investigated, which shows that the present method is highly accurate as compared with other existing reference data.
Keywords :
Lamb wave propagation , Chebyshev polynomials , spectral finite element , Functionally graded materials , Finite element method
Journal title :
Journal of Computational Physics
Serial Year :
2014
Journal title :
Journal of Computational Physics
Record number :
1486338
Link To Document :
بازگشت