Title of article
Monitoring of warmed-over flavour in pork using the electronic nose – correlation to sensory attributes and secondary lipid oxidation products
Author/Authors
Tikk، نويسنده , , Kaja and Haugen، نويسنده , , John-Erik and Andersen، نويسنده , , Henrik J. and Aaslyng، نويسنده , , Margit D.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
10
From page
1254
To page
1263
Abstract
Sensory analysis of meatballs was carried out to monitor the warmed-over flavour (WOF) development in cooked, cold-stored (at 4 °C for 0, 2 and 4 days) and reheated meatballs derived from M. longissimus dorsi (LD) and M. semimembranosus (SM) of pigs fed a standard diet supplemented with either 3% of rapeseed oil or 3% of palm oil. This was performed in combination with measurement of volatile compounds using a solid-state-based gas sensor array system (electronic nose) and gas chromatography/mass spectrometry together with measurement of thiobarbitoric acid reactive substances (TBARS). Subsequently, to elucidate the relations and predictability between the obtained data, the gas sensor responses were correlated with chemical (volatile and non-volatile secondary lipid oxidation products) and sensory data (flavour and odour attributes), using partial least squares regression modelling (PLSR). The TBARS, hexanal, pentanal, pentanol and nonanal all correlated to the sensory attributes associated to WOF formation. Moreover, the responses from eight of the MOS (metal oxide semiconductor) sensors within the electronic nose proved to be significantly related to WOF characteristics detected by both sensory and chemical analysis, while six of the MOSFET (metal oxide semiconductor field effect transistor) sensors were related to freshly cooked meat attributes determined by sensory analysis. The obtained results show the potential of the present gas sensor technology to monitor WOF formation in pork.
Keywords
sensory analysis , Gas sensors , Electronic nose , volatiles , pork , Flavour , Re-heating , cold storage , lipid oxidation
Journal title
Meat Science
Serial Year
2008
Journal title
Meat Science
Record number
1488692
Link To Document