Title of article :
Automatic preprocessing of electrophoretic images
Author/Authors :
Daszykowski، نويسنده , , M. and Wrَbel، نويسنده , , M.S. and Bierczynska-Krzysik، نويسنده , , A. and Silberring، نويسنده , , J. and Lubec، نويسنده , , G. Pasz-Walczak، نويسنده , , B.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
9
From page :
132
To page :
140
Abstract :
Analysis of two-dimensional (2D) electrophoretic images is a multi-step approach, enabling application of a variety of methods at different stages of data processing. The choice of these, as well as input parameters, leads to software-induced variations. Effective preprocessing methods, which do not require optimization of input parameters, are potent in eliminating software-induced variations. As a general method for background elimination and image scaling, robust Orthogonal Regression (rOR) is proposed and compared with Orthogonal Regression. This comparison is based on the univariate and multivariate approaches of feature selection, exploring the idea developed for significance analysis of microarray data [V. Goss Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied to the ionizing radiation response, P. Natl. Acad. Sci. U. S. A., 98 (2001) 5116–5121] and adapted to the analysis of proteomic data. All calculations are performed at the pixel level.
Keywords :
Gel Electrophoresis , Comparative proteomics , Significant features , Images analysis , robust regression , Robust orthogonal regression
Journal title :
Chemometrics and Intelligent Laboratory Systems
Serial Year :
2009
Journal title :
Chemometrics and Intelligent Laboratory Systems
Record number :
1489513
Link To Document :
بازگشت