Title of article
How to simulate normal data sets with the desired correlation structure
Author/Authors
Arteaga، نويسنده , , Francisco and Ferrer، نويسنده , , Alberto، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2010
Pages
5
From page
38
To page
42
Abstract
The Cholesky decomposition is a widely used method to draw samples from multivariate normal distribution with non-singular covariance matrices. In this work we introduce a simple method by using singular value decomposition (SVD) to simulate multivariate normal data even if the covariance matrix is singular, which is often the case in chemometric problems. The covariance matrix can be specified by the user or can be generated by specifying a subset of the eigenvalues. The latter can be an advantage for simulating data sets with a particular latent structure. This can be useful for testing the performance of chemometric methods with data sets matching the theoretical conditions for their applicability; checking their robustness when the hypothesized properties fail; or generating data from multi-stage or multi-phase processes.
Keywords
Simulation , Multivariate normal , Singular value decomposition , eigenvalues
Journal title
Chemometrics and Intelligent Laboratory Systems
Serial Year
2010
Journal title
Chemometrics and Intelligent Laboratory Systems
Record number
1489707
Link To Document