Title of article :
Reliable and accurate prediction of the experimental buckling of thin-walled cylindrical shell under an axial load
Author/Authors :
Sli?، نويسنده , , Robert and Chang، نويسنده , , Min-Yung، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
Reliable and accurate method of the experimental buckling prediction of thin-walled cylindrical shell under an eccentric load is presented. The experimental arrangement and specimens are discussed in detail, including the measurement of the geometric imperfections of the specimenʹs surface using a coordinate measuring machine. Different FE models, in terms of complexity, are used to simulate the experiment arrangement in an attempt to get a good agreement with the experimental buckling loads and study the effect of measured initial geometric imperfections, load eccentricity, load eccentricity position along the shellʹs circumferential direction and different experimental arrangement that influence the boundary conditions. It has been demonstrated that FE models with simplified rigid support conditions overestimate the prediction of the experimental buckling load even though these models included the effects of the measured initial geometric imperfections and load eccentricity. By contrast, FE models with realistically modeled support conditions achieved the best result. The average deviation −1.59% from the experimental buckling loads was achieved using the FE model simulating the mounting devices as elastic bodies and with surface-to-surface contact interaction behavior on the support. The presented work also demonstrated the strong influence of the eccentric load position along the imperfect shellʹs circumferential direction on the buckling of the thin-walled shell.
Keywords :
Thin-walled structure , Experimental analysis , Cylindrical shells , Finite element analysis , Buckling
Journal title :
Thin-Walled Structures
Journal title :
Thin-Walled Structures