Title of article :
A TDR-pressure cell design for measuring the soil-water retention curve
Author/Authors :
Moret-Fernلndez، نويسنده , , D. and Arrْe، نويسنده , , J.L. and Pérez، نويسنده , , V. and Lَpez، نويسنده , , M.V.، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2008
Pages :
6
From page :
114
To page :
119
Abstract :
This paper presents a new type of pressure cell associated with a zigzag-shaped time domain reflectometry (TDR) probe for determining the soil-water retention (θ(ψ)) curve of disturbed thin soil samples. The pressure cell, designed for pressures ranging between 0 and −500 kPa, consisted of a zigzag copper rod (150-mm long, 2 mm in diameter) vertically installed in a clear plastic cylinder (60-mm high, 50 mm in internal diameter) with six vertical copper rods (60-mm long, 2 mm in diameter) arranged around the inner wall of the plastic cylinder. The cylinder was closed at the base with a nylon cloth and placed on a porous ceramic disc. The inner rod and the six-rod grille of the cell were connected respectively to the inner and outer conductors of a coaxial cable. The results showed that the correlation between the apparent dielectric constant measured with a standard three-rod TDR probe and the zigzag-shaped TDR probe, both immersed in five different non-conductive fluids, was excellent (R2 = 0.99). On the other hand, the volumetric water content measured with the TDR probe of the pressure cell filled up with sand, 2-mm sieved loam and clay-loam soils was highly correlated to the corresponding values calculated from the gravimetric water content and the soil bulk density (R2 = 0.97; RMSE = 2.32 × 10−2). The parameters of the θ(ψ) curves measured for these three different soils with the TDR-pressure cell were within the range of values found in the literature. The cell was also used to study the θ(ψ) changes of a 2–4-mm sample of loam soil aggregates after a slow and a fast-wetting process. While negligible changes in both the soil structure and θ(ψ) were observed following slow wetting, fast wetting resulted in disintegration of aggregates and drastic changes in the shape of the θ(ψ) curve.
Keywords :
time domain reflectometry , Soil-water retention , Pressure cell
Journal title :
Soil and Tillage Research
Serial Year :
2008
Journal title :
Soil and Tillage Research
Record number :
1493948
Link To Document :
بازگشت