Title of article :
Community-scale renewable energy systems planning under uncertainty—An interval chance-constrained programming approach
Author/Authors :
Cai، نويسنده , , Y.P. and Huang، نويسنده , , G.H. and Yang، نويسنده , , Z.F. and Lin، نويسنده , , Q.G. and Tan، نويسنده , , Q.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
15
From page :
721
To page :
735
Abstract :
In this study, an inexact community-scale energy model (ICS-EM) has been developed for planning renewable energy management (REM) systems under uncertainty. This method is based on an integration of the existing interval linear programming (ILP), chance-constrained programming (CCP) and mixed integer linear programming (MILP) techniques. ICS-EM allows uncertainties presented as both probability distributions and interval values to be incorporated within a general optimization framework. It can also facilitate capacity-expansion planning for energy-production facilities within a multi-period and multi-option context. Complexities in energy management systems can be systematically reflected, thus applicability of the modeling process can be highly enhanced. The developed method has then been applied to a case of long-term renewable energy management planning for three communities. Useful solutions for the planning of energy management systems have been generated. Interval solutions associated with different risk levels of constraint violation have been obtained. They can be used for generating decision alternatives and thus help decision makers identify desired policies under various economic and system-reliability constraints. The generated solutions can also provide desired energy resource/service allocation and capacity-expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs and constraint-violation risks can also be tackled. Higher costs will increase system stability, while a desire for lower system costs will run into a risk of potential instability of the management system. They are helpful for supporting (a) adjustment or justification of allocation patterns of energy resources and services, (b) formulation of local policies regarding energy consumption, economic development and energy structure, and (c) analysis of interactions among economic cost, system reliability and energy-supply security.
Keywords :
Decision Making , Energy systems , Greenhouse gas , MANAGEMENT , Renewable energy , uncertainty , Community , environment
Journal title :
Renewable and Sustainable Energy Reviews
Serial Year :
2009
Journal title :
Renewable and Sustainable Energy Reviews
Record number :
1498629
Link To Document :
بازگشت