Title of article :
Electric energy demands of Turkey in residential and industrial sectors
Author/Authors :
Bilgili، نويسنده , , Mehmet and Sahin، نويسنده , , Besir and Yasar، نويسنده , , Abdulkadir and Simsek، نويسنده , , Erdogan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The main objective of the present study is to apply the artificial neural network (ANN) methodology, linear regression (LR) and nonlinear regression (NLR) models to estimate the electricity consumptions of the residential and industrial sectors in Turkey. Installed capacity, gross electricity generation, population and total subscribership were selected as independent variables. Two different scenarios (powerful and poor) were proposed for prediction of the future electricity consumption. Obtained results of the LR, NLR and ANN models were also compared with each other as well as the projection of the Ministry of Energy and Natural Resources (MENR) and the results in literature. Results of the comparison showed that the performance values of the ANN method are better than the performance values of the LR and NLR models. According to the poor scenario and ANN model, Turkeyʹs residential and industrial sector electricity consumptions will increase to value of 140.64 TWh and 124.85 TWh by 2015, respectively.
Keywords :
Artificial neural networks (ANNs) , Electricity Consumption , Industrial sector , Linear regression (LR) , Residential sector , Nonlinear regression (NLR)
Journal title :
Renewable and Sustainable Energy Reviews
Journal title :
Renewable and Sustainable Energy Reviews