Title of article :
Investigation of creep deformation mechanisms and environmental effects on creep resistance in a Ti2AlNb based intermetallic alloy
Author/Authors :
Yang، نويسنده , , Seung Jin and Nam، نويسنده , , Soo Woo and Hagiwara، نويسنده , , Masuo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
14
From page :
261
To page :
274
Abstract :
Creep deformation mechanisms and environmental effects of Ti2AlNb based intermetallic alloys are investigated. Two different creep deformation mechanisms operate in accordance with elevating temperatures in the range of 600–800 °C. Below 700 °C, dislocation climb by pipe-diffusion may control the creep deformation. A sharp drop of creep resistance is observed above 700 °C in an air environment. This abnormal acceleration in creep rate may be due to the abundant supply of easily mobile dislocations on the prismatic plane provided by the bcc to O phase transformation. Therefore, the creep deformation mechanism above 700 °C may be considered to be the bcc to O phase transformation that generates prismatic dislocations. The creep resistance in a vacuum environment is superior to that in the air environment, especially at temperatures above 700 °C. This may be because the limited oxygen level in a vacuum environment can keep the bcc phase stable at such temperatures. Therefore, prismatic dislocations to control and accelerate creep rate above 700 °C are not supported by the bcc to O phase transformation and the creep resistance can be enhanced.
Keywords :
A. Titanium aluminides , based on Ti3Al , B. Creep , B. Mechanical properties at high temperatures , G. Aero-engine components
Journal title :
Intermetallics
Serial Year :
2004
Journal title :
Intermetallics
Record number :
1501878
Link To Document :
بازگشت