Title of article :
Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism
Author/Authors :
Yang، نويسنده , , Weihong and Blasiak، نويسنده , , Wlodzimierz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
943
To page :
957
Abstract :
A study of the mathematical modelling of NO formation and emissions in a gas-fired regenerative furnace with high-preheated air was performed. The model of NO formation via N2O-intermediate mechanism was proposed because of the lower flame temperature in this case. The reaction rates of this new model were calculated basing on the eddy-dissipation-concept. This model accompanied with thermal-NO, prompt-NO and NO reburning models were used to predict NO emissions and formations. The sensitivity of the furnace temperature and the oxygen availability on NO generation rate has been investigated. The predicted results were compared with experimental values. sults show that NO emission formed by N2O-intermediate mechanism is of outstanding importance during the high-temperature air combustion (HiTAC) condition. Furthermore, it shows that NO models with N2O-route model can give more reasonable profile of NO formation. Additionally, increasing excess air ratio leads to increasing of NO emission in the regenerative furnace.
Keywords :
HiTAC , Nitrous oxide mechanism , Furnace
Journal title :
Fuel Processing Technology
Serial Year :
2005
Journal title :
Fuel Processing Technology
Record number :
1507024
Link To Document :
بازگشت